Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.414
Filter
1.
Curr Pharm Des ; 30(4): 255-277, 2024.
Article in English | MEDLINE | ID: mdl-38711394

ABSTRACT

BACKGROUND: The escalation of cancer worldwide is one of the major causes of economy burden and loss of human resources. According to the American Cancer Society, there will be 1,958,310 new cancer cases and 609,820 projected cancer deaths in 2023 in the United States. It is projected that by 2040, the burden of global cancer is expected to rise to 29.5 million per year, causing a death toll of 16.4 million. The hemostasis regulation by cellular protein synthesis and their targeted degradation is required for normal cell growth. The imbalance in hemostasis causes unbridled growth in cells and results in cancer. The DNA of cells needs to be targeted by chemotherapeutic agents for cancer treatment, but at the same time, their efficacy and toxicity also need to be considered for successful treatment. OBJECTIVE: The objective of this study is to review the published work on pyrrole and pyridine, which have been prominent in the diagnosis and possess anticancer activity, to obtain some novel lead molecules of improved cancer therapeutic. METHODS: A literature search was carried out using different search engines, like Sci-finder, Elsevier, ScienceDirect, RSC etc., for small molecules based on pyrrole and pyridine helpful in diagnosis and inducing apoptosis in cancer cells. The research findings on the application of these compounds from 2018-2023 were reviewed on a variety of cell lines, such as breast cancer, liver cancer, epithelial cancer, etc. Results: In this review, the published small molecules, pyrrole and pyridine and their derivatives, which have roles in the diagnosis and treatment of cancers, were discussed to provide some insight into the structural features responsible for diagnosis and treatment. The analogues with the chromeno-furo-pyridine skeleton showed the highest anticancer activity against breast cancer. The compound 5-amino-N-(1-(pyridin-4- yl)ethylidene)-1H-pyrazole-4-carbohydrazides was highly potent against HEPG2 cancer cell. Redaporfin is used for the treatment of cholangiocarcinoma, biliary tract cancer, cisplatin-resistant head and neck squamous cell carcinoma, and pigmentation melanoma, and it is in clinical trials for phase II. These structural features present a high potential for designing novel anticancer agents for diagnosis and drug development. CONCLUSION: Therefore, the N- and C-substituted pyrrole and pyridine-based novel privileged small Nheterocyclic scaffolds are potential molecules used in the diagnosis and treatment of cancer. This review discusses the reports on the synthesis of such molecules during 2018-2023. The review mainly discusses various diagnostic techniques for cancer, which employ pyrrole and pyridine heterocyclic scaffolds. Furthermore, the anticancer activity of N- and C-substituted pyrrole and pyridine-based scaffolds has been described, which works against different cancer cell lines, such as MCF-7, A549, A2780, HepG2, MDA-MB-231, K562, HT- 29, Caco-2 cells, Hela, Huh-7, WSU-DLCL2, HCT-116, HBL-100, H23, HCC827, SKOV3, etc. This review will help the researchers to obtain a critical insight into the structural aspects of pyrrole and pyridine-based scaffolds useful in cancer diagnosis as well as treatment and design pathways to develop novel drugs in the future.


Subject(s)
Antineoplastic Agents , Neoplasms , Pyridines , Pyrroles , Humans , Neoplasms/drug therapy , Neoplasms/diagnosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Animals
2.
Eur J Med Chem ; 271: 116407, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38663283

ABSTRACT

Xanthine oxidoreductase (XOR) and uric acid transporter 1 (URAT1) are two most widely studied targets involved in production and reabsorption of uric acid, respectively. Marketed drugs almost target XOR or URAT1, but sometimes, single agents might not achieve aim of lowering uric acid to ideal value in clinic. Thus, therapeutic strategies of combining XOR inhibitors with uricosuric drugs were proposed and implemented. Based on our initial work of virtual screening, A and B were potential hits for dual-targeted inhibitors on XOR/URAT1. By docking A/B with XOR/URAT1 respectively, compounds I1-7 were designed to get different degree of inhibition effect on XOR and URAT1, and I7 showed the best inhibitory effect on XOR (IC50 = 0.037 ± 0.001 µM) and URAT1 (IC50 = 546.70 ± 32.60 µM). Further docking research on I7 with XOR/URAT1 led to the design of compounds II with the significantly improved inhibitory activity on XOR and URAT1, such as II11 and II15. Especially, for II15, the IC50 of XOR is 0.006 ± 0.000 µM, superior to that of febuxostat (IC50 = 0.008 ± 0.000 µM), IC50 of URAT1 is 12.90 ± 2.30 µM, superior to that of benzbromarone (IC50 = 27.04 ± 2.55 µM). In acute hyperuricemia mouse model, II15 showed significant uric acid lowering effect. The results suggest that II15 had good inhibitory effect on XOR/URAT1, with the possibility for further investigation in in-vivo models of hyperuricemia.


Subject(s)
Drug Design , Enzyme Inhibitors , Organic Anion Transporters , Organic Cation Transport Proteins , Pyridines , Animals , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Mice , Humans , Structure-Activity Relationship , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Molecular Docking Simulation , Xanthine Dehydrogenase/antagonists & inhibitors , Xanthine Dehydrogenase/metabolism , Dose-Response Relationship, Drug , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Male , Uric Acid/metabolism
3.
Eur J Med Chem ; 271: 116391, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38669909

ABSTRACT

LIM Kinases, LIMK1 and LIMK2, have become promising targets for the development of inhibitors with potential application for the treatment of several major diseases. LIMKs play crucial roles in cytoskeleton remodeling as downstream effectors of small G proteins of the Rho-GTPase family, and as major regulators of cofilin, an actin depolymerizing factor. In this article we describe the conception, synthesis, and biological evaluation of novel tetrahydropyridine pyrrolopyrimidine LIMK inhibitors. Homology models were first constructed to better understand the binding mode of our preliminary compounds and to explain differences in biological activity. A library of over 60 products was generated and in vitro enzymatic activities were measured in the mid to low nanomolar range. The most promising derivatives were then evaluated in cell on cofilin phosphorylation inhibition which led to the identification of 52 which showed excellent selectivity for LIMKs in a kinase selectivity panel. We also demonstrated that 52 affected the cell cytoskeleton by disturbing actin filaments. Cell migration studies with this derivative using three different cell lines displayed a significant effect on cell motility. Finally, the crystal structure of the kinase domain of LIMK2 complexed with 52 was solved, greatly improving our understanding of the interaction between 52 and LIMK2 active site. The reported data represent a basis for the development of more efficient LIMK inhibitors for future in vivo preclinical validation.


Subject(s)
Lim Kinases , Protein Kinase Inhibitors , Lim Kinases/antagonists & inhibitors , Lim Kinases/metabolism , Humans , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Molecular Structure , Cell Movement/drug effects , Models, Molecular , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Dose-Response Relationship, Drug , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis
4.
Bioorg Med Chem Lett ; 105: 129745, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614151

ABSTRACT

A series of 8 novel pyridinyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PYRIB-SOs) were designed, prepared and evaluated for their mechanism of action. PYRIB-SOs were found to have antiproliferative activity in the nanomolar to submicromolar range on several breast cancer cell lines. Moreover, subsequent biofunctional assays indicated that the most potent PYRIB-SOs 1-3 act as antimitotics binding to the colchicine-binding site (C-BS) of α, ß-tubulin and that they arrest the cell cycle progression in the G2/M phase. Microtubule immunofluorescence and tubulin polymerisation assay confirm that they disrupt the cytoskeleton through inhibition of tubulin polymerisation as observed with microtubule-destabilising agents. They also show good overall theoretical physicochemical, pharmacokinetic and druglike properties. Overall, these results show that PYRIB-SOs is a new family of promising antimitotics to be further studied in vivo for biopharmaceutical and pharmacodynamic evaluations.


Subject(s)
Antimitotic Agents , Cell Proliferation , Colchicine , Drug Screening Assays, Antitumor , Humans , Colchicine/chemistry , Colchicine/metabolism , Colchicine/pharmacology , Binding Sites , Antimitotic Agents/pharmacology , Antimitotic Agents/chemistry , Antimitotic Agents/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Cell Line, Tumor , Benzenesulfonates/chemistry , Benzenesulfonates/pharmacology , Benzenesulfonates/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Tubulin/metabolism , Molecular Structure , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Tubulin Modulators/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Dose-Response Relationship, Drug
5.
J Agric Food Chem ; 72(18): 10218-10226, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38666644

ABSTRACT

In this work, a series of pyrrolidinone-containing 2-phenylpyridine derivatives were synthesized and evaluated as novel protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) inhibitors for herbicide development. At 150 g ai/ha, compounds 4d, 4f, and 4l can inhibit the grassy weeds of Echinochloa crus-galli (EC), Digitaria sanguinalis (DS), and Lolium perenne (LP) with a range of 60 to 90%. Remarkably, at 9.375 g ai/ha, these compounds showed 100% inhibition effects against broadleaf weeds of Amaranthus retroflexus (AR) and Abutilon theophrasti (AT), which were comparable to the performance of the commercial herbicides flumioxazin (FLU) and saflufenacil (SAF) and better than that of acifluorfen (ACI). Molecular docking analyses revealed significant hydrogen bonding and π-π stacking interactions between compounds 4d and 4l with Arg98, Asn67, and Phe392, respectively. Additionally, representative compounds were chosen for in vivo assessment of PPO inhibitory activity, with compounds 4d, 4f, and 4l demonstrating excellent inhibitory effects. Notably, compounds 4d and 4l induced the accumulation of reactive oxygen species (ROS) and a reduction in the chlorophyll (Chl) content. Consequently, compounds 4d, 4f, and 4l are promising lead candidates for the development of novel PPO herbicides.


Subject(s)
Drug Design , Enzyme Inhibitors , Herbicides , Molecular Docking Simulation , Plant Weeds , Protoporphyrinogen Oxidase , Pyrrolidinones , Protoporphyrinogen Oxidase/antagonists & inhibitors , Protoporphyrinogen Oxidase/chemistry , Protoporphyrinogen Oxidase/metabolism , Herbicides/pharmacology , Herbicides/chemistry , Herbicides/chemical synthesis , Plant Weeds/drug effects , Plant Weeds/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Pyrrolidinones/chemical synthesis , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Amaranthus/drug effects , Amaranthus/chemistry , Echinochloa/drug effects , Echinochloa/enzymology , Digitaria/drug effects , Digitaria/enzymology , Digitaria/chemistry , Lolium/drug effects , Lolium/enzymology , Molecular Structure
6.
Org Lett ; 25(24): 4445-4450, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37310879

ABSTRACT

This study presents a DNA-compatible synthesis of diverse 5-arylimidazo[1,2-a]pyridin-3-amine derivatives using the Suzuki-Miyaura reaction, followed by a Groebke-Blackburn-Bienaymé (GBB) reaction. The GBB reaction demonstrates a wide substrate scope, mild one-pot reaction conditions, and compatibility with subsequent enzymatic ligation, highlighting its potential in DNA-encoded library technology.


Subject(s)
Amines , DNA , Cyclization , Gene Library , Pyridines/chemical synthesis , Pyridines/chemistry
7.
Biomed Res Int ; 2022: 6383893, 2022.
Article in English | MEDLINE | ID: mdl-35586808

ABSTRACT

Due to the high homology of the ATP sites of the JAK family, the development of selective inhibitors for a certain JAK isoform is extremely challenging. Our strategy to achieve high selectivity for TYK2 relies on targeting the TYK2 pseudokinase (JH2) domain. Based on the clinical compound BMS-986165, through structure-activity relationship studies, a class of acyl compounds with excellent TYK2 inhibitory activity and selectivity to other subtypes of the JAK family was discovered.


Subject(s)
Janus Kinases , Pyridines/chemical synthesis , TYK2 Kinase , Janus Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Structure-Activity Relationship , TYK2 Kinase/antagonists & inhibitors
8.
J Enzyme Inhib Med Chem ; 37(1): 844-856, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35296193

ABSTRACT

A novel series of aminotrimethylpyridinol and aminodimethylpyrimidinol derivatives were designed and synthesised for FGFR4 inhibitors. Structure-activity relationship on the FGFR4 inhibitory activity of the new compounds was clearly elucidated by an intensive molecular docking study. Anti-cancer activity of the compounds was evaluated using hepatocellular carcinoma (HCC) cell lines and a chick chorioallantoic membrane (CAM) tumour model. Compound 6O showed FGFR4 inhibitory activity over FGFR1 - 3. Compared to the positive control BLU9931, compound 6O exhibited at least 8 times higher FGFR4 selectivity. Strong anti-proliferative activity of compound 6O was observed against Hep3B, an HCC cell line which was a much more sensitive cell line to BLU9931. In vivo anti-tumour activity of compound 6O against Hep3B-xenografted CAM tumour model was almost similar to BLU9931. Overall, compound 6O, a novel derivative of aminodimethylpyrimidinol, was a selective FGFR4 kinase inhibitor blocking HCC tumour growth.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Drug Design , Liver Neoplasms/drug therapy , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Chickens , Dose-Response Relationship, Drug , Humans , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Models, Molecular , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
9.
J Med Chem ; 65(4): 3343-3358, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35166541

ABSTRACT

Cholesterol 24-hydroxylase (CH24H or CYP46A1) is a brain-specific cytochrome P450 enzyme that metabolizes cholesterol into 24S-hydroxycholesterol (24HC) for regulating brain cholesterol homeostasis. For the development of a novel and potent CH24H inhibitor, we designed and synthesized 3,4-disubstituted pyridine derivatives using a structure-based drug design approach starting from compounds 1 (soticlestat) and 2 (thioperamide). Optimization of this series by focusing on ligand-lipophilicity efficiency value resulted in the discovery of 4-(4-methyl-1-pyrazolyl)pyridine derivative 17 (IC50 = 8.5 nM) as a potent and highly selective CH24H inhibitor. The X-ray crystal structure of CH24H in complex with compound 17 revealed a unique binding mode. Both blood-brain barrier penetration and reduction of 24HC levels (26% reduction) in the mouse brain were confirmed by oral administration of 17 at 30 mg/kg, indicating that 17 is a promising tool for the novel and selective inhibition of CH24H.


Subject(s)
Anticholesteremic Agents/chemical synthesis , Anticholesteremic Agents/pharmacology , Cholesterol 24-Hydroxylase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Animals , Anticholesteremic Agents/pharmacokinetics , Blood-Brain Barrier/metabolism , Brain/metabolism , Cholesterol/metabolism , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/pharmacokinetics , Female , Hydroxycholesterols , Lipids/chemistry , Mice , Mice, Inbred C57BL , Structure-Activity Relationship
10.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164101

ABSTRACT

3-Amino-2-arylcarboxamido-thieno[2,3-b]pyridines have been shown to have anti-proliferative activity, but are also known to have poor solubility. This has been previously proposed to be due to their extensive planarity, which allows for intermolecular stacking and crystal packing. We herein report the synthesis of fifteen novel thieno[2,3-b]pyridines that have incorporated bulky, but easily cleavable, ester and carbonate functional groups in an effort to decrease crystal packing. The addition of these 'prodrug-like' moieties into the thieno[2,3-b]pyridine resulted in compounds with increased activity against HCT-116 colon cancer cells and the triple-negative breast cancer cell line MDA-MB-231.


Subject(s)
Antineoplastic Agents , Cell Proliferation/drug effects , Neoplasms/drug therapy , Pyridines , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Neoplasms/metabolism , Neoplasms/pathology , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 61: 128552, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35051574

ABSTRACT

The transforming growth factor type ß receptor I (TGF-ß R1, also known as activin-like kinase 5 or ALK5) plays a significant role in the pathogenesis of multiple diseases such as malignant tumors and tissue fibrosis. Specific inhibition of ALK5 provides a novel method for controlling the development of cancers and fibrotic diseases. Herein, a novel series of 4-(pyridine-4-oxy)-3-(tetrahydro-2H-pyran-4-yl)-pyrazole derivatives was synthesized and identified as ALK5 inhibitors. Among them, compound 8h inhibited ALK5 autophosphorylation and NIH3T3 cell activity with IC50 values of 25 nM and 74.6 nM, respectively. Compound 8h also showed favorable pharmacokinetic profile and ameliorated hERG inhibition. More importantly, 30 mg/kg oral administration of 8h could significantly induce tumour growth inhibition in CT26 xenograft model without obvious toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Structure , NIH 3T3 Cells , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Receptor, Transforming Growth Factor-beta Type I/metabolism , Structure-Activity Relationship
12.
Dalton Trans ; 51(5): 1968-1978, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35023532

ABSTRACT

Four mononuclear terpyridine complexes [Cu(H-La)Cl2]·CH3OH (1), [Cu(H-La)Cl]ClO4 (2), [Cu(H-Lb)Cl2]·CH3OH (3), and [Cu(H-Lb)(CH3OH)(DMSO)](ClO4)2 (4) were prepared and fully characterized. Complexes 1-4 exhibited higher cytotoxic activity against several tested cancer cell lines especially BEL-7402 cells compared to cisplatin, and they showed low toxicity towards normal human liver cells. ICP-MS detection indicated that the copper complexes were accumulated in mitochondria. Mechanistic studies demonstrated that the copper complexes induced G0/G1 arrest and altered the expression of the related proteins of the cell cycle. All copper complexes reduced the mitochondrial membrane potential while increasing the intracellular ROS levels and the release of Ca2+. They also up-regulated Bax and down-regulated Bcl-2 expression levels, caused cytochrome c release and the activation of the caspase cascade, and induced mitochondrion-mediated apoptosis. Animal studies demonstrated that complex 1 suppressed tumor growth in a mouse xenograft model bearing BEL-7402 tumor cells.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Calcium/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Caspase 9/genetics , Caspase 9/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , Coordination Complexes , Copper , Gene Expression Regulation, Neoplastic/drug effects , Humans , Models, Molecular , Molecular Structure , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Reactive Oxygen Species , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
13.
Bioorg Med Chem Lett ; 59: 128565, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35065234

ABSTRACT

In order to discover and develop the new RSK kinase inhibitor, 50 pyridyl biaryl derivatives were designed and synthesized with LJH685 as the lead compound and their anti-tumor ability was tested. The results showed that the ability of 7d compound to inhibit the phosphorylation of YB-1 was comparable to that of LJH685. Among them, after preliminary screening, compound 7d showed good activity in inhibiting cell proliferation. Therefore, we took 7d as an example and performed molecular docking analysis on it. Judging from the overlapping combination diagram with LJH685, the results have verified that compound 7d has a similar skeleton to LJH685 and has a similar docking effect with RSK. Therefore, compound 7d is in line with the RSK inhibitor we designed and could be developed to a promising anti-tumor drug in the future.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
14.
J Inorg Biochem ; 229: 111729, 2022 04.
Article in English | MEDLINE | ID: mdl-35066350

ABSTRACT

Ruthenium complexes with good biological properties have attracted increasing attention in recent decades. In this work, three ruthenium polypyridine complexes containing 5-fluorouracil derivatives as ligands, [Ru(bpy)2(L)]2+ (Ru1), [Ru(phen)2(L)]2+ (Ru2), [Ru(dip)2(L)]2+ (Ru3) (L = 1-((1,10-phenanthroline-5-amino) pentyl)-5-fluorouracil; bpy = 2,2'-bipyridine; phen =1,10-phenanthroline; dip = 4,7-diphenyl-1,10-phenanthroline), were synthesized and characterized. Based on in vitro cytotoxicity tests, Ru3 (IC50 = 7.35 ± 0.39 µM) showed the best anticancer activity among three compounds in the selected cell lines. It is worth noting that Ru3 also exerts less cytotoxicity on LO2 cell lines, with an IC50 value 5 times higher than that on HeLa cells, indicating its selective activity. Mechanism studies revealed that Ru3 can specifically target lysosomes and induce cell apoptosis in a caspase-dependent manner. Specifically, Ru3 can arrest cell cycle at the G0/G1 phase, increase the intracellular reactive oxygen species (ROS) level, and then damage DNA. In short, Ru3 can eventually cause cell death through the synergy of inducing apoptosis and autophagy, which was further proven by western blot assay results.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Coordination Complexes/pharmacology , Lysosomes/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/radiation effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , DNA Damage/drug effects , Drug Screening Assays, Antitumor , Fluorouracil/analogs & derivatives , Fluorouracil/pharmacology , Fluorouracil/toxicity , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Ligands , Pyridines/chemical synthesis , Pyridines/pharmacology , Pyridines/toxicity , Reactive Oxygen Species/metabolism , Ruthenium/chemistry
15.
Nat Commun ; 13(1): 115, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013254

ABSTRACT

Efflux transporters of the RND family confer resistance to multiple antibiotics in Gram-negative bacteria. Here, we identify and chemically optimize pyridylpiperazine-based compounds that potentiate antibiotic activity in E. coli through inhibition of its primary RND transporter, AcrAB-TolC. Characterisation of resistant E. coli mutants and structural biology analyses indicate that the compounds bind to a unique site on the transmembrane domain of the AcrB L protomer, lined by key catalytic residues involved in proton relay. Molecular dynamics simulations suggest that the inhibitors access this binding pocket from the cytoplasm via a channel exclusively present in the AcrB L protomer. Thus, our work unveils a class of allosteric efflux-pump inhibitors that likely act by preventing the functional catalytic cycle of the RND pump.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/drug effects , Lipoproteins/chemistry , Membrane Transport Proteins/chemistry , Multidrug Resistance-Associated Proteins/chemistry , Piperazines/pharmacology , Pyridines/pharmacology , Allosteric Regulation/drug effects , Allosteric Site , Anti-Bacterial Agents/chemistry , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Biological Transport/drug effects , Crystallography, X-Ray , Drug Resistance, Multiple, Bacterial , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Lipoproteins/antagonists & inhibitors , Lipoproteins/genetics , Lipoproteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Molecular Dynamics Simulation , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Mutation , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oxacillin/chemistry , Oxacillin/pharmacology , Piperazines/chemical synthesis , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyridines/chemical synthesis , Structure-Activity Relationship
16.
Bioorg Chem ; 118: 105464, 2022 01.
Article in English | MEDLINE | ID: mdl-34785441

ABSTRACT

A series of imido-heterocycle compounds were designed, synthesized, characterized, and evaluated for the anticancer potential using breast (MCF-7 and MDA-MB-231), pancreatic (PANC-1), and colon (HCT-116 and HT-29) cancer cell lines and normal cells, while normal cells showed no toxicity. Among the screened compounds, 4h exhibited the best anticancer potential with IC50 values ranging from 1 to 5.5 µM. Compound 4h caused G2/M phase arrest and apoptosis in all the cell lines except MDA-MB-231 mammosphere formation was inhibited. In-vitro enzyme assay showed selective topoisomerase IIα inhibition by compound 4h, leading to DNA damage as observed by fluorescent staining. Cell signalling studies showed decreased expression of cell cycle promoting related proteins while apoptotic proteins were upregulated. Interestingly MDA-MB-231 cells showed only cytostatic effects upon treatment with compound 4h due to defective p53 status. Toxicity study using overexpression of dominant-negative mutant p53 in MCF-7 cells (which have wild type functional p53) showed that anticancer potential of compound 4h is positively correlated with p53 expression.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
17.
Chem Biodivers ; 19(1): e202100500, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34784450

ABSTRACT

In this study, an efficient one-pot procedure for preparing a new series of pyrazolo[3,4-b]pyridine-fused pyrimidines was described. The target hybrids were developed through a three-component reaction of 3-amino-1H-pyrazolo[3,4-b]pyridine, benzaldehydes, and acetophenones (molar ratio 1 : 1 : 1). The best conditions for the previous reaction were 2.5 equivalents of barium hydroxide in DMF at 150 °C for 6 h. New bis(pyrimidines) were synthesized in high yields using a similar one-pot reaction protocol with some modifications. Thus, two equivalents of each of the appropriate acetophenones and 3-aminopyrazolopyridine were reacted with one equivalent of the appropriate bis(aldehydes). The reaction was carried out at 150 °C for 8 h using 4.5 equivalents of barium hydroxide in DMF. Repeating the previous reaction with the appropriate bis(acetyl) derivatives and benzaldehydes resulted in good yields of the target bis(pyrimidines). The in vitro cytotoxic activity of new pyrimidines against the MCF-7, HEPG2, and Caco2 cell lines was evaluated using the reference doxorubicin (IC50 values of 4.34-6.97 µM). Hybrid 6h had the best activity against Caco2 and MCF-7 cell lines, IC50 values of 12.62 and 14.50 µM, respectively. The IC50 values for hybrids 6c, 6e, and 6f against MCF-7 and Caco2 cell lines were 23.99-41.69 and 33.14-43.33 µM, respectively. Furthermore, hybrid 6e displayed IC50 value of 20.06 µM HEPG2 cell lines, while the hybrids 6c, 6f and 6h exhibited IC50 values ranging between 26.29-50.51 µM. Furthermore, hybrid 6e had an IC50 value of 20.06 µM for the HEPG2 cell lines, whereas hybrids 6c, 6f, and 6h had IC50 values ranging from 26.29 to 50.51 µM.


Subject(s)
Antineoplastic Agents/chemical synthesis , Barium Compounds/chemistry , Pyrazoles/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Stereoisomerism , Structure-Activity Relationship
18.
J Med Chem ; 65(1): 688-709, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34951310

ABSTRACT

Development of new bacterial biofilm inhibitors as antibacterial synergists is an effective strategy to solve the resistance of Pseudomonas aeruginosa. In this paper, a series of 3-hydroxy-pyridin-4(1H)-ones were synthesized and evaluated, and the hit compound (20p) was identified with the effects of inhibiting the production of pyocyanin (IC50 = 8.6 µM) and biofilm formation (IC50 = 4.5 µM). Mechanistic studies confirmed that 20p inhibits the formation of bacterial biofilm by inhibiting the expression of pqsA, blocking pqs quorum sensing system quinolone biosynthesis. Moreover, we systematically investigated the bactericidal effects of combining currently approved antibiotics for CF including tobramycin, ciprofloxacin, and colistin E with 20p, which showed obvious antibacterial synergy to overcome antibiotics resistance in multidrug-resistant P. aeruginosa biofilms. The result indicates that compound 20p may be used in the future as a potentially novel antibacterial synergist candidate for the treatment of P. aeruginosa infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Animals , Biofilms/drug effects , Cell Line , Cell Survival/drug effects , Colony Count, Microbial , Drug Synergism , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pyocyanine/antagonists & inhibitors , Pyridines/chemical synthesis , Pyridines/pharmacology , Quinolones/metabolism , Zebrafish
19.
Bioorg Chem ; 119: 105564, 2022 02.
Article in English | MEDLINE | ID: mdl-34959179

ABSTRACT

Herein, we report design and synthesis of twenty-one dual PIM-1/HDAC inhibitors utilizing 3-cyanopyridines as a novel cap moiety linked with aliphatic /aromatic linker bearing carboxylic acid 3a-g, hydroxamic acid 4a-g or 2-aminoanilide moieties 5a-g as zinc-binding group. Most of the target hybrids revealed promising growth inhibition according to one dose NCI protocol against 60 cancer cell lines. Meanwhile, hydroxamic acids 4b, 4d and 4e displayed strong and broad-spectrum activity against nine tumor subpanels tested (GI50 0.176-8.87 µM); 4d displayed strong antiproliferative activity with GI50 ≤ 3 µM against different cancer cell lines (GI50 range from 0.325 to 2.9 µM). Furthermore, 4a, 4d-4g and 5f manifested a high inhibitory activity against HDACs 1 and 6 isozymes; 4g, displayed potent HDAC 1 and 6 inhibitory activity (45.01 ± 2.1 and 19.78 ± 1.1 nM) more than the reference SAHA (51.54 ± 2.4 and 21.38 ± 1.2 nM, respectively), while 4f was more potent (30.09 ± 1.4 nM) than SAHA against HDAC 1 and less potent (30.29 ± 1.7 nM) than SAHA against HDAC 6. Hybrids 4b, 4d, 4e and 4f exhibited potent PIM-1 inhibitory activity; 4d showed comparable activity to quercetin (IC50 of 343.87 ± 16.6 and 353.76 ± 17.1 nM, respectively); it exhibited pre G1 apoptosis and arrest cell cycle at G2/M phase. Moreover, it revealed good binding into pocket of HDACs 1,6 and PIM-1 kinase enzymes with good correlation with biological results. Moreover, 4b, 4d and 4e had reasonable drug-likeness properties according to Lipinski's rule. However, multitarget inhibitor of PIM-1/HDAC is a promising strategy in anticancer drug discovery; the most potent hybrids require further in vivo and clinical investigations.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
20.
Eur J Med Chem ; 228: 114010, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34861640

ABSTRACT

Due to unknown pathogenesis and unidentified drug target, no drug for the treatment of osteosarcoma (OS) has been launched to the market. Herein, thiazolidinone 1a was discovered as a hit compound by phenotypic screening with an in-house patrimonial collection of structural diversity. The following SAR (Structure-Activity Relationship) study affords the final water-soluble lead compound (R)-8i as a potential inhibitor for the proliferation of OS cells by the modulation of solubility of the compounds with remarkable cellular potency (IC50 = 21.9 nM for MNNG/HOS cells) and in vivo efficacy (52.9% inhibition OS growth in mice), as well as pharmacokinetic properties. (R)-8i also significantly suppresses OS cell migration in vitro and showed to be well-tolerated. Our preliminary investigation shows that the effects of (R)-8i are not dependent on p53 and myoferlin (MYOF). These results suggest that (R)-8i might be a potential drug candidate for OS treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Osteosarcoma/drug therapy , Pyridines/pharmacology , Thiazolidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Osteosarcoma/pathology , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Thiazolidines/chemical synthesis , Thiazolidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...